Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
2.
J Phys Chem B ; 128(15): 3643-3651, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38588455

RESUMO

Ionizable lipid-containing lipid nanoparticles (LNPs) are regarded as promising nonviral vectors for gene therapy delivery systems. Rationale design of the ionizable lipid structure based on initial screening of ionizable lipid molecule libraries combined with systematic comparison and analysis on the physical chemical parameters related to delivery efficiency greatly accelerated the discovery of novel LNP candidates for delivering various nucleic acid therapeutics like mRNAs (mRNAs). Based on the copper-catalyzed azide-alkyne click reaction, which is highly efficient and biocompatible, we were able to obtain the lipid molecule library containing a common triazole moiety between different lipid tails and various substituents as hydrophilic head groups. Herein, we systematically investigated the change of pKa values of different ionizable lipid molecules with different substituents as head groups in the click-based lipid library, mapping the pKa value change to different steps in the process of the LNP assembly and mRNA delivery. Systematic analyses on the data including the pKa value of the ionized lipids and the encapsulation and delivery efficiency of mRNA in LNPs with these ionized lipids provided the possibility of rational design on the head and tail structure for the triazole containing ionized lipids to realize highly efficient delivery of different mRNAs.


Assuntos
Lipídeos , Lipossomos , Nanopartículas , RNA Interferente Pequeno/química , RNA Mensageiro , Lipídeos/química , Nanopartículas/química , Triazóis
3.
Artigo em Inglês | MEDLINE | ID: mdl-38619802

RESUMO

OBJECTIVE: Vericiguat is a new medication to demonstrate clinical efficacy in heart failure with reduced ejection fraction (HFrEF) after worsening heart failure (WHF) events, but its cost-utility was unknown. We aimed to assess the cost-utility of combining the application of vericiguat with standard treatment in HFrEF patients who had WHF events. METHODS: A multistate Markov model was implemented to mimic the economic results of HFrEF patients who had WHF events in China after receiving vericiguat or placebo. An analysis of cost-utility was conducted; most parameters were set according to the published studies and related databases. All the utilities and costs were decreased at a rate of 5% annually. The incremental cost-effectiveness ratios (ICERs) were the primary outcome measure. We also conducted sensitivity analyses. RESULTS: Over a 20 year lifetime horizon, additional use of vericiguat led to an elevated cost from US$9725.03 to US$20,660.76 at the current vericiguat costs. This was related to increased quality-adjusted life years (QALYs) from 2.50 to 2.66, along with an ICER of US$65,057.24 per QALY, which was over the willingness-to-pay (WTP) threshold of US$36,096.30 per QALY. If the vericiguat costs were discounted at 80%, it contributed to an ICER of US$12,226.77 per QALY. Additional use of vericiguat for patients with plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP) of ≤ 5314 pg per ml produced an ICER of US$23,688.46 per QALY. The outcomes of the one-way sensitivity analysis showed the risk of death from cardiovascular disease in both groups was variable with the highest sensitivity. The probabilistic sensitivity analysis showed that 41.6% of the mimicked population receiving vericiguat combined with standard therapy was cost-effective at the WTP threshold of US$36,096.30 per QALY. CONCLUSIONS: From the perspective of Chinese public healthcare system, the combined use of vericiguat and standard treatment in patients with HFrEF following WHF events did not generate advantages in cost-utility in China but was a cost-effective therapeutic strategy for those who with plasma NT-proBNP of ≤ 5314 pg per ml.

4.
J Fluoresc ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430415

RESUMO

Nitroxyl (HNO) plays an important role in various physiological activities. It has the potential to be used as a treatment for certain diseases such as alcohol poisoning, acute hypertension, and atherosclerosis. However, traditional methods for detecting HNO are challenging due to its rapid polymerization and elimination into N2O. Therefore, it is crucial to establish direct and effective HNO detection methods to comprehend these physiological processes better. In this study, a new near-infrared fluorescent probe called HXM-P based on the intramolecular charge transfer (ICT) mechanism was designed and synthesized. This probe employs 2-((6-hydroxy-2,3dihydro-1 H-xanthen-4-yl)methylene)malononitrile as a fluorophore and 2-(diphenylphosphine) benzoate as a recognition group. The results showed that probe HXM-P can detect HNO with high sensitivity (1.07 × 10- 8 M). A good linear correlation was observed between the fluorescence intensities at 640 nm and the concentrations of HNO in the range of 0-80 µM (R2 = 0.997). Moreover, probe HXM-P exhibited a rapid response rate (within 15 s) toward HNO, and the fluorescent intensity reached a plateau within 5 min, making it easier to track the highly reactive and short-lived HNO in living systems. Additionally, HXM-P was successfully employed for imaging HNO in HepG2 cells.

6.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474068

RESUMO

Primary failure of eruption (PFE) is a rare oral disease with an incidence rate of 0.06%. It is characterized by abnormal eruption mechanisms that disrupt tooth eruption. The underlying pathogenic genetic variant and mechanism of PFE remain largely unknown. The purpose of this study was to explore the role of a novel transmembrane protein 119 (TMEM119) mutation in two PFE patients in a Chinese family. Information collection was performed on the family with a diagnosis of PFE, and blood samples from patients and healthy family members were extracted. Whole-exome sequencing was performed. Bioinformatics analysis revealed that a heterozygous variant in the TMEM119 gene (c.G143A, p.S48L) was a disease-associated mutation in this family. Recombinant pcDNA3.1 plasmid-containing wild-type and mutant TMEM119 expression cassettes were successfully constructed and transfected into MC3T3-E1 cells, respectively. The results of in vitro analysis suggested that the subcellular distribution of the TMEM119 protein was transferred from the cell cytoplasm to the nucleus, and the ability of cells to proliferate and migrate as well as glycolytic and mineralized capacities were reduced after mutation. Furthermore, rescue assays showed that activating transcription factor 4 (ATF4) overexpression rescued the attenuated glycolysis and mineralization ability of cells. Results of in vivo analysis demonstrated that TMEM119 was mainly expressed in the alveolar bone around the mouse molar germs, and the expression level increased with tooth eruption, demonstrated using immunohistochemistry and immunofluorescence. Collectively, the novel TMEM119 mutation is potentially pathogenic in the PFE family by affecting the glucose metabolism and mineralized function of osteoblasts, including interaction with ATF4. Our findings broaden the gene mutation spectrum of PFE and further elucidate the pathogenic mechanism of PFE.


Assuntos
Osteogênese , Erupção Dentária , Humanos , Animais , Camundongos , Erupção Dentária/genética , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Mutação , Glicólise
7.
Life (Basel) ; 14(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398744

RESUMO

This study aimed to investigate the morphological characteristics of fruits and seeds from Diptychocarpus strictus, a plant species inhabiting the cold desert pastoral area of China. Furthermore, this study sought to evaluate the germination potential of these seeds following digestion by sheep. This study employed the sheep rumen fistula method to simulate rumen digestion at various time intervals. Subsequently, an in vitro simulation method was utilized to simulate true gastric and intestinal digestion after rumen digestion. Paper germination tests were then conducted to assess the impact of the digestive process on the heteromorphic seed morphology and germination. During rumen digestion, the seeds were protected by wide wings. The results revealed a highly significant negative correlation (p < 0.01) between seed wing length and digestion time. Post-rumen digestion, variations in the germination rate among seeds from fruits at different locations were observed. Indicators, such as germination rate, exhibited a highly significant negative correlation with rumen digestion time (p < 0.01). In vitro simulated digestion tests demonstrated that Diptychocarpus strictus seeds retained their ability to germinate even after complete digestion within the livestock's digestive tract. The polymorphic nature of Diptychocarpus strictus seeds, coupled with their capacity to survive and germinate through the digestive tract, facilitates the spread of these seeds. This finding has implications for mitigating desert grassland degradation and promoting sustainable ecological development.

8.
Environ Int ; 184: 108492, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350258

RESUMO

Water-soluble organic molecules (WSOMs) in inhaled PM2.5 can readily translocate from the lungs into the blood circulation, facilitating their distribution to and health effects on distant organs and tissues in the human body. Human serum albumin (HSA), the most abundant protein carrier in the blood, readily binds exogenous substances to form non-covalent adducts and subsequently transports them throughout the circulatory system, thereby indicating their internal exposure. The direct internal exposure of WSOMs in PM2.5 needs to be understood. In this study, the non-covalent HSA-WSOM adductome was developed as a dosimeter to evaluate the internal exposure potential of WSOMs in urban PM2.5. The WSOM composition was acquired from non-target high-resolution mass spectrometry analysis coupled with multiple ionizations. The binding level of HSA-WSOM non-covalent adducts was obtained from surface plasma resonance. Machine learning combined WSOM composition and the binding level of HSA-WSOM non-covalent adducts to screen bindable (also internalizable) WSOMs. The concentration of WSOM ranged from 4 to 13 µg/m3 during our observation period. Of the 17,513 mass spectral features detected, 9,484 contributed to the non-covalent adductome and possessed the internal exposure potential. 102 major contributors accounted for 90.6 % of the HSA-WSOM binding level. The fraction of internalizable WSOMs in PM2.5 varied from 11.9 % to 61.3 %, averaging 26.2 %. WSOMs that have internal exposure potential were primarily lignin-like and lipid-like substances. The HSA-WSOMs non-covalent adductome represents direct internal exposure potential, which can provide crucial insights into the molecular diagnosis of PM2.5 exposure and precise assessments of PM2.5 health effects.


Assuntos
Material Particulado , Água , Humanos , Material Particulado/análise , Albumina Sérica Humana , Espectrometria de Massas , Aerossóis/análise
9.
Sci Total Environ ; 913: 169679, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163608

RESUMO

The information on how plant populations respond genetically to climate warming is scarce. Here, landscape genomic and machine learning approaches were integrated to assess genetic response of 10 wild barley (Hordeum vulgare ssp. spontaneum; WB) populations in the past and future, using whole genomic sequencing (WGS) data. The WB populations were sampled in 1980 and again in 2008. Phylogeny of accessions was roughly in conformity with sampling sites, which accompanied by admixture/introgressions. The 28-y climate warming resulted in decreased genetic diversity, increased selection pressure, and an increase in deleterious single nucleotide polymorphism (dSNP) numbers, heterozygous deleterious and total deleterious burdens for WB. Genome-environment associations identified some candidate genes belonging to peroxidase family (HORVU2Hr1G057450, HORVU4Hr1G052060 and HORVU4Hr1G057210) and heat shock protein 70 family (HORVU2Hr1G112630). The gene HORVU2Hr1G120170 identified by selective sweep analysis was under strong selection during the climate warming of the 28-y, and its derived haplotypes were fixed by WB when faced with the 28-y increasingly severe environment. Temperature variables were found to be more important than precipitation variables in influencing genomic variation, with an eco-physiological index gdd5 (growing degree-days at the baseline threshold temperature of 5 °C) being the most important determinant. Gradient forest modelling revealed higher predicted genomic vulnerability in Sede Boqer under future climate scenarios at 2041-2070 and 2071-2100. Additionally, estimates of effective population size (Ne) tracing back to 250 years indicated a forward decline in all populations over time. Our assessment about past genetic response and future vulnerability of WB under climate warming is crucial for informing conservation efforts for wild cereals and rational use strategies.


Assuntos
Hordeum , Hordeum/genética , Clima , Genômica , Temperatura , Genes de Plantas , Variação Genética
10.
Int J Biol Macromol ; 259(Pt 1): 129181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184036

RESUMO

The unique features of self-healing hydrogels hold great potential for biomedical applications including injectable hydrogels for cancer treatment, procedures for tumor removal or resection. However, the fabrication of durable and multifunctional self-healing hydrogels composed of biocompatible, green building blocks via versatile synthetic methodology continues to pose a significant challenge. Here, we engineered dialdehyde cellulose (DAC, as a macromolecular bio-crosslinker), and electrosterically stabilized nanocrystalline cellulose (ENCC, as a ligand-targeted drug carrier) to facilitate a strategy for the construction of self-healing hydrogels. Benefiting from its high carboxyl group density, ENCC was functionalized with folic acid (FA) using a non-toxic DMTMM coupling agent and loaded with doxorubicin (DOX, a model drug) through electrostatic interactions. A natural self-healing hydrogel was prepared from carboxymethyl chitosan (CCTS) and DAC mixed with DOX-loaded FA-ENCC using dynamic Schiff-base and hydrogen linkages. A combination of active supramolecular and vital covalent junctions led to a soft (storage modulus ∼500 Pa) and durable material, with rapid (< 5 min) reconstruction of molecular structure from fractured and injected to intact forms. The DAC-CCTS hydrogel showed an appreciable loading capacity of ∼5 mg g-1. Biocompatibility of the hydrogels was evaluated using cell viability and metabolic activity assays, showing lower metabolic activity due to sustained release of its cargo. These materials offer a versatile, sustainable, and green platform for the efficient construction of hydrogels, based on macro- and nano-engineered cellulose, the most abundant and easily accessible biopolymer.


Assuntos
Quitosana , Hidrogéis , Hidrogéis/química , Polímeros , Celulose/química , Quitosana/química , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química
11.
Environ Sci Pollut Res Int ; 31(9): 14284-14302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277105

RESUMO

In this paper, an interval Air Quality Index (AQI) combination prediction model based on EEMD, VMD, and the weighted power average (WPA) operator is proposed. EEMD and VMD decompose complex AQI data effectively, while WPA operator reasonably aggregates the prediction results of different models. We validate the effectiveness of the proposed model using Shenzhen's daily interval AQI. Furthermore, three kinds of prediction models are compared with the proposed model to highlight its advantages from various perspectives. The results show that the introduction of data decomposition methods significantly improves the model's prediction accuracy, WPA operator further enhances the model's prediction capability, and the incorporation of EEMD and VMD enables the proposed model to have stronger feature extraction capabilities for complex time series. As a result, the model proposed in this paper demonstrates strong generalization ability and prediction accuracy, making it applicable not only for air quality prediction but also for other domains such as economics and environment.


Assuntos
Poluição do Ar , Fatores de Tempo
13.
Eur J Pharm Sci ; 192: 106658, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048851

RESUMO

Early-stage clinical evaluation of tinengotinib (TT-00420) demonstrated encouraging preliminary efficacies in multiple types of refractory cancers, including fibroblast growth factor receptors (FGFR) inhibitors relapsed cholangiocarcinoma (CCA), castrate-resistant prostate cancer (CRPC), and HR+/HER2- breast cancer and triple negative breast cancer (TNBC). To further evaluate drug-like properties of the drug candidate, it is imperative to understand its metabolism and pharmacokinetic properties. This manuscript presented the investigation results of in vitro permeability, plasma protein binding, metabolic stability, metabolite identification, and drug-drug interaction of tinengotinib. Preclinical ADME (absorption, distribution, excretion, and metabolism) studies in rats and dogs was also conducted using a radioactive labeled tinengotinib, [14C]tinengotinib. Tinengotinib was found to have high permeability and high plasma protein binding and equally distributed between blood and plasma. There were no unique metabolites in human liver microsomes and tinengotinib showed moderate hepatic clearance. Tinengotinib is neither a potential inhibitor nor an inducer of P450 enzymes at clinically relevant concentrations, and unlikely to cause drug-drug interactions when used in combination with other drugs mediated by a key transporter, either as victim or perpetrator. Taken together, tinengotinib demonstrated a minimal risk of clinically relevant drug-drug interactions. Tinengotinib showed good oral bioavailability and dose-dependent exposures in both rat and dog after oral administration. The total radioactivity was largely distributed in the gastrointestinal system and liver, and tinengotinib could not easily pass through the blood-brain barrier. The major drug-related component in rat and dog plasma was unchanged drug (>89 %) with primary route of elimination via feces (>93 % of the dose) and minor via renal excretion (<4 % of the dose). Tinengotinib metabolism is mediated largely by CYP3A4, with minor contributions from CYP2D6 and CYP2C8. Major metabolic pathways include oxidation, oxidative cleavage of the morpholine ring, glucuronide and glutathione conjugations. The overall preclinical pharmacokinetics profile supported the selection and development of tinengotinib as a clinical candidate.


Assuntos
Colangiocarcinoma , Drogas em Investigação , Masculino , Ratos , Humanos , Animais , Cães , Drogas em Investigação/metabolismo , Interações Medicamentosas , Preparações Farmacêuticas/metabolismo , Disponibilidade Biológica , Inibidores de Proteínas Quinases/farmacocinética , Administração Oral , Microssomos Hepáticos/metabolismo , Colangiocarcinoma/metabolismo
14.
Pract Radiat Oncol ; 14(2): e87-e96, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37871850

RESUMO

PURPOSE: Voluntary deep inspiration breath-hold (DIBH) is commonly used in radiation therapy (RT), but the short duration of a single breath-hold, estimated to be around 20 to 40 seconds, is a limitation. This prospective study aimed to assess the feasibility and safety of using a simple preoxygenation technique with a Venturi mask to prolong voluntary DIBH. METHODS AND MATERIALS: The study included 33 healthy volunteers and 21 RT patients. Preoxygenation was performed using a Venturi mask with a 50% oxygen concentration. Paired t tests compared the duration of a single DIBH in room air and after 5, 15, and 30 minutes of preoxygenation in healthy volunteers. Sustainability of breath-hold and tolerability of heart rate and blood pressure were assessed for multiple DIBH durations in both volunteers and patients. RESULTS: In healthy volunteers, a 15-minute preoxygenation significantly prolonged the duration of a single DIBH by 24.95 seconds compared with 5-minute preoxygenation (89 ± 27.76 vs 113.95 ± 30.63 seconds; P < .001); although there was a statistically significant increase in DIBH duration after 30-minute preoxygenation, it was only extended by 4.95 seconds compared with 15-minute preoxygenation (113.95 ± 30.63 vs 118.9 ± 29.77 seconds; P < .01). After 15-minute preoxygenation, a single DIBH lasted over 100 seconds in healthy volunteers and over 80 seconds in RT patients, with no significant differences among 6 consecutive cycles of DIBH. Furthermore, there were no significant differences in heart rate or blood pressure after DIBHs, including DIBH in room air and 6 consecutive DIBHs after 15-minute preoxygenation (all P > .05). CONCLUSIONS: Preoxygenation with a 50% oxygen concentration for 15 minutes effectively prolongs the duration of 6 cycles of DIBH both in healthy volunteers and RT patients. The utilization of a Venturi mask to deliver 50% oxygen concentration provides a solution characterized by its convenience, good tolerability, and effectiveness.


Assuntos
Suspensão da Respiração , Máscaras , Humanos , Estudos Prospectivos , Voluntários , Oxigênio , Planejamento da Radioterapia Assistida por Computador , Coração , Órgãos em Risco
15.
Sci Total Environ ; 912: 169555, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38157913

RESUMO

Antioxidants are typically seen as agents that mitigate environmental health risks due to their ability to scavenge free radicals. However, our research presents a paradox where these molecules, particularly those within lung fluid, act as prooxidants in the presence of airborne particulate matter (PM2.5), thus enhancing PM2.5 oxidative potential (OP). In our study, we examined a range of antioxidants found in the respiratory system (e.g., vitamin C, glutathione (GSH), and N-acetylcysteine (NAC)), in plasma (vitamin A, vitamin E, and ß-carotene), and in food (tert-butylhydroquinone (TBHQ)). We aimed to explore antioxidants' prooxidant and antioxidant interactions with PM2.5 and the resulting OP and cytotoxicity. We employed OH generation assays and electron paramagnetic resonance assays to assess the pro-oxidative and anti-oxidative effects of antioxidants. Additionally, we assessed cytotoxicity interaction using a Chinese hamster ovary cell cytotoxicity assay. Our findings revealed that, in the presence of PM2.5, all antioxidants except vitamin E significantly increased the PM2.5 OP by generating more OH radicals (OH generation rate: 0.16-24.67 pmol·min-1·m-3). However, it's noteworthy that these generated OH radicals were at least partially neutralized by the antioxidants themselves. Among the pro-oxidative antioxidants, vitamin A, ß-carotene, and TBHQ showed the least ability to quench these radicals, consistent with their observed impact in enhancing PM2.5 cytotoxicity (PM2.5 LC50 reduced to 91.2 %, 88.8 %, and 75.1 % of PM2.5's original level, respectively). Notably, vitamin A and TBHQ-enhanced PM2.5 OP were strongly associated with the presence of metals and organic compounds, particularly with copper (Cu) contributing significantly (35 %) to TBHQ's pro-oxidative effect. Our study underscores the potential health risks associated with the interaction between antioxidants and ambient pollutants.


Assuntos
Poluentes Atmosféricos , Antioxidantes , Hidroquinonas , Cricetinae , Animais , Antioxidantes/metabolismo , beta Caroteno , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Células CHO , Vitamina A , Cricetulus , Material Particulado/toxicidade , Material Particulado/análise , Vitamina E , Glutationa , Estresse Oxidativo
16.
Carbohydr Polym ; 326: 121590, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142089

RESUMO

The utilization of biomass waste has attracted much interest, but such attention hasn't been paid to the abundant fallen maple leaves in Canada. Herein, we aim to obtain cellulose nanocrystals (CNCs) from maple leaves and explore their potential applications as sustainable stabilizers of Pickering emulsions for the preservation of food products with complicated structures. The results reveal that two types of CNCs were extracted from maple leaves at different alkaline conditions. Octenyl succinic anhydride was selected to modify rod-like CNCs, and the CNC-stabilized oil-in-water Pickering emulsions showed excellent stability. Cinnamaldehyde, a model antibacterial compound, was incorporated in the Pickering emulsions, which exhibited the improved storage stability and sustained antibacterial capacity towards both Gram-positive and Gram-negative bacteria. Shrimp was chosen as an example that has complicated surface structure and is hard to disinfect, and the CNC-stabilized Pickering emulsions could be easily sprayed on the surface of shrimp to inhibit the proliferation of bacteria and inactivate the psychrophilic bacteria responsible for shrimp spoilage at refrigerated condition, so as to preserve the quality of shrimp. Therefore, the current work suggests the possibility to utilize fallen maple leaves as a promising source of CNCs and the applications of CNC-stabilized Pickering emulsions in seafood preservation.


Assuntos
Acer , Nanopartículas , Emulsões/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Celulose/química , Alimentos Marinhos , Nanopartículas/química
17.
J Phys Chem B ; 127(48): 10404-10410, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37997846

RESUMO

Ion rejection during seawater freezing is the basis for freeze desalination. A high ion rejection rate is desired for improving the performance of freeze desalination. In this work, we propose a method to enhance the ion rejection rate through external shear, which is demonstrated through molecular dynamics (MD) simulations and experiments. MD simulations show that the ion rejection rate increases with an increasing shear rate. This is attributed to the disruption of the hydration bonds between ions and water molecules in the hydration shell caused by the shear. Consequently, the mobility of ions is increased, and the energy barrier is reduced at the ice-water interface such that ions have a greater chance of diffusing into the aqueous solution, leading to an enhanced ion rejection rate. The MD results in this work are qualitatively confirmed by experiments and provide insights into the enhancement of the ion rejection rate through external parameters.

18.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014271

RESUMO

Spontaneous retinal waves are a critical driving force for the self-organization of the mouse visual system prior to eye-opening. Classically characterized as taking place in three distinct stages defined by their primary excitatory drive, Stage II waves during the first postnatal week are propagated through the volume transmission of acetylcholine while Stage III retinal waves during the second postnatal week depend on glutamatergic transmission from bipolar cells. However, both late Stage II and early Stage III retinal waves share a defining propagation bias toward the temporal-to-nasal direction despite developmental changes in the underlying cholinergic and glutamatergic retinal networks. Here, we leverage genetic and pharmacological manipulations to investigate the relationship between cholinergic and glutamatergic neurotransmission during the transition between Stage II and Stage III waves in vivo. We find that the cholinergic network continues to play a vital role in the propagation of waves during Stage III after the primary mode of neurotransmission changes to glutamate. In the absence of glutamatergic waves, compensatory cholinergic activity persists but lacks the propagation bias typically observed in Stage III waves. In the absence of cholinergic waves, gap junction-mediated activity typically associated with Stage I waves persists throughout the developmental window in which Stage III waves usually emerge and lacks the spatiotemporal profile of normal Stage III waves, including a temporal-to-nasal propagation bias. Finally, we show that cholinergic signaling through ß2 subunit-containing nicotinic acetylcholine receptors, essential for Stage II wave propagation, is also critical for Stage III wave directionality.

19.
Oral Dis ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849447

RESUMO

OBJECTIVES: Confirm that stem cells from human exfoliated deciduous teeth-derived exosomes (SHED-exos) can limit inflammation-triggered epithelial cell apoptosis and explore the molecular mechanism. METHODS: SHED-exos were injected into the submandibular glands (SMGs) of non-obese diabetic (NOD) mice, an animal model of Sjögren's syndrome (SS). Cell death was evaluated by western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling staining. RESULTS: SHED-exos treatment promoted the saliva flow rates of NOD mice, accompanied by decreased cleaved caspase-3 levels and apoptotic cell numbers in SMGs. SHED-exos inhibited autophagy, pyroptosis, NETosis, ferroptosis, necroptosis and oxeiptosis marker expression in SS-damaged glands. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis of exosomal miRNAs suggested that the rat sarcoma virus (RAS)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway might play an important role. In vivo, the expression of Kirsten RAS, Harvey RAS, MEK1/2 and p-ERK1/2 was upregulated in SMGs, and this change was blocked by SHED-exos treatment. In vitro, SHED-exos suppressed p-ERK1/2 activation and increased cleaved caspase-3 and apoptotic cell numbers, which were induced by IFN-γ. CONCLUSION: SHED-exos suppress epithelial cell death, which is responsible for promoting salivary secretion. SHED-exos inhibited inflammation-triggered epithelial cell apoptosis by suppressing p-ERK1/2 activation, which is involved in these effects.

20.
J Dent Sci ; 18(4): 1867-1875, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799925

RESUMO

Background/purpose: Gingival epithelial cells form a physiological barrier against bacterial invasion. Programmed cell death (PCD) regulated by pathogen precognition receptors (PRRs) lead to tissue destruction and is closely related to inflammatory diseases. The purpose of this study was to investigate whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 (NLRP6) expresses in periodontal epithelium and induces PCD of epithelial cells infected by Porphyromonas gingivalis (P. gingivalis), therefore involves in periodontitis. Material and methods: The expression of NLRP6 was detected in periodontal epithelium from human gingival sections and HaCaT cells stimulated by P. gingivalis. NLRP6 was over-expressed by adenovirus infection in HaCaT or knocked down by siRNA in P. gingivalis infected HaCaT, and the cell death was observed by transmission electron microscopy and flow cytometry analysis. In addition, qPCR and Western blot were performed to determine the expression of NLRP6 and the pyroptosis excutors, caspase-1 and gasdermin D. Enzyme-linked immunosorbent assay were performed to detect the secretion of IL-1ß and IL-18. Results: NLRP6 was up-regulated in both gingival epithelium of patients with periodontitis and P. gingivalis infected HaCaT. Over-expression of NLRP6 in HaCaT led to caspase-1 dependent pyroptosis. Interestingly, knockdown of NLRP6 with siRNA followed by P. gingivalis stimulation inhibited pyroptosis and induced apoptosis. Conclusion: Up-regulation of NLRP6 by P. gingivalis in HaCaT led to pyroptosis, while knocking down NLRP6 inhibited pyroptosis and induced apoptosis, which indicated this PRR may play a crucial role in periodontitis by regulating PCD in periodontal epithelium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...